

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Quasiquotes 0.2.1 documentation

quasiquotes

[image: docs] [http://quasiquotes.readthedocs.org/en/latest/]

Blocks of non-python code sprinkled in for extra seasoning.

What is a quasiquote

An quasiquote is a new syntactical element that allows us to embed non
python code into our existing python code. The basic structure is as follows:

coding: quasiquotes

[$name|some code goes here|]

This desuagars to:

name.quote_expr("some code goes here", frame, col_offset)

where frame is the executing stack frame and col_offset is the column
offset of the quasiquoter.

This allows us to use slightly nicer syntax for our code.
The # coding: quasiquotes is needed to enable this extension.
The syntax is chosen to match haskell’s quasiquote syntax from GHC 6.12. We need
to use the older syntax (with the $) because python’s grammar would be
ambiguous without it at the quote open step. To simplify the tokenizer, we chose
to use slighly more verbose syntax.

We may also use statement syntax for quasiquotes in a modified with block:

coding: quasiquotes

with $name:
 some code goes here

This desuagars to:

name.quote_stmt(" some code goes here", frame, col_offset)

The c quasiquoter

The builtin c quasiquoter allows us to inline C code into our python.
For example:

>>> from quasiquotes.c import c
>>> def f(a):
... with $c:
... printf("%ld\n", PyLong_AsLong(a));
... a = Py_None;
... Py_INCREF(a);
... print(a)
...
>>> f(0)
0
None
>>> f(1)
1
None

Here we can see that the quasiquoter can read from and write to the local
scope.

We can also quote C expressions with the quote expression syntax.

>>> def cell_new(n):
... return [$c|PyCell_New(n);]
...
>>> cell_new(1)
<cell at 0x7f8dde6cd5e8: int object at 0x7f8ddf956780>

Here we can see that the c quasiquoter is really convenient as a python
interface into the C API.

Warning

CPython uses a reference counting system to manage the lifetimes of objects.
Code like:

return [$|Py_None|]

can cause a potential segfault when None because it will have 1 less
reference than expected. Instead, be sure to remember to incref your
expressions with:

return [$|Py_INCREF(Py_None); Py_None|]

You must also incref when reassigning names from the enclosing python scope.
For more information, see the
CPython docs [https://docs.python.org/3.6/c-api/refcounting.html].

The r quasiquoter

The optional r quasiquoter allows us to inline R code into our python.
For example:

>>> from quasiquotes.r import r
>>> def f(a):
... with $r:
... print(a)
... a <- 1
... print(a)
...
>>> f(0)
[1]
 0

array([1.])
>>> f(1)
[1]
 0

array([2.])

Here we can see that the quasiquoter can read from and write to the local
scope.

Note

The return type is coerced to a numpy array of length one because there are
no scalar types in R.

We can also quote R expressions with the quote expression syntax.

>>> def r_isna(df):
... return [$r|is.na(df)|]
...
>>> df = pd.DataFrame({'a': [1, 2, None], 'b': [4, None, 6]})
>>> df
 a b
0 1 4
1 2 NaN
2 NaN 6
>>> r_isna(df)
array([[0, 0],
 [0, 1],
 [1, 0]], dtype=int32)

Note

The r quasiquoter is installed with pip install quasiquotes[r]
This will install rpy2 which is used to interface with R.

IPython Integration

We can use the c quasiquoter in the IPython repl or notebook as a cell or
line magic. When used as a line magic, it is quoted as an expression. When used
as a cell magic, it is quoted as a statement.

In [1]: import quasiquotes.c

In [2]: a = 5

In [3]: %c PyObject *b = PyLong_FromLong(3); PyObject *ret = PyNumber_Add(a, b); Py_DECRE F(b); ret;
Out[3]: 8

In [4]: %%c
 ...: printf("%ld + %ld = %ld\n", 3, PyLong_AsLong(a), PyLong_AsLong(_3));
 ...: puts("reassigning 'a'");
 ...: a = Py_None;
 ...: Py_INCREF(a);
 ...:
3 + 5 = 8
reassigning 'a'

In [5]: a is None
Out[5]: True

Contents

	Quasiquotes API

	Inline c

	fromfile

	Implementation

	Appendix

 Copyright 2015, Joe Jevnik.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Quasiquotes 0.2.1 documentation

Quasiquotes API

quasiquotes is designed to make it easy to extend python syntax with arbitrary
parsing logic. To define a new syntax enhancement, create an instance of a
subclass of QuasiQuoter that overrides the
quote_expr or quote_stmt methods.

	
class quasiquotes.quasiquoter.QuasiQuoter

	Custom parsing logic for python

	
static locals_to_fast(frame, *, _locals_to_fast=<_FuncPtr object>, _pyobject=<class 'ctypes.py_object'>, _true=c_int(1))

	Write the f_locals of frame back into the fast local
storage.

	Parameters:	frame : frame

The frame whose f_locals and fast will be synced.

	
quote_expr(expr, frame, col_offset)

	Quote an expression.

This is called in the oxford brackets case: [$qq|...|]

	Parameters:	expr : str

The expression to quote.

frame : frame

The stack frame where this expression is being executed.

col_offset : int

The column offset for the quasiquoter.

	Returns:	v : any

The value of the quoted expression.

	
quote_stmt(stmt, frame, col_offset)

	Quote a statment.

This is called in the enhanced with block case: with $qq: ...

	Parameters:	stmt : str

The statement to quote.
This will have the unaltered indentation.

frame : frame

The stack frame where this statement is being executed.

col_offset : int

The column offset for the quasiquoter.

quote_stmt has no value. It is used to run normal imperitive code like you
would normally put in the body of a context manager.

quote_expr has a value. It is used to create expressions that can be plugged
into other expressions.

Both quote_stmt and quote_expr are passed 3 arguments:

	String representing the body of either the expression or statement

	Stackframe where this is being executed

	Column offset of the quasiquoter

The string will be the pre-built string literal the we constructed at decode
time. The stackframe will be the python stackframe where the quoted statement or
expression is being used. Finally the column offset will be the pre-built
integer constant that represents the offset of the quasiquote token.

Each quasiquoter is free to do whatever it wants with this information,
including mutation of the calling frame’s locals, compiling new code, or just
ignoring the body.

A quasiquoter does not need to implement both quote_stmt and
quote_expr. In some cases, it only makes sense to support one of these
features. If a quote type is used syntactically; however, the runtime
quasiquoter does not support this featere then a
quasiquotes.quasiquoter.QQNotImplementedError exception will be
raised.

 Copyright 2015, Joe Jevnik.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Quasiquotes 0.2.1 documentation

Inline c

The most fully featured quasiquoter and the the reason that this project exists
is the c quasiquoter. The c quasiquoter is designed to be
a way to seamlessly use the CPython API while preserving code locality and
avoiding boilerplate.

When optimizing python, we often find that very few functions are hotspots that
require us to rewrite in c. Good practice says to start in python and then
slowly port the slow functions into c one at a time. We don’t just want to
rewrite all of it because then we lose the maintainability of python for a
trivial gain. The c quasiquoter gives us even more fine control over which parts
of our program can be in c by allowing us to weave sections of c into our python
functions. We can even do things like rewrite a single loop in a function
in c.

One of the main benifits of this approach is that we can keep the optimized c
code right next to the python that it is supporting. This is a huge benifit for
maintainability.

Namespace Management

The c quasiquoter allows us to manipulate the python namespace of the enclosing
scope. For example:

>>> a = 1
>>> b = 'test'
>>> with $c:
... printf("%ld\n%s\n",
... PyLong_AsLong(a),
... PyUnicode_AsUTF8(b));
1
test

Here we can see that the variables from the enclosing scope have been passed
into our function. All python values will have the standard type of
PyObject* and can be used like normal.

We can also change the namespace just like a normal context manager.

>>> a = 1
... with $c:
... printf("%ld\n", PyLong_AsLong(a));
... a = Py_None;
... Py_INCREF(a);
1
>>> a is None
True

Here we can see that the enhanced with block can reassign the names in
scope. This even works for the locals of a function.

Quoted Expressions

The c quasiquoter also allows for quoted expressions. Just like the enhanced
with statment, the quoted expression can use the names from the enclosing scope.
For example:

>>> [$c|PyLong_FromLong(2)|] + 2
4
>>> a = 2
>>> [$c|PyLong_FromLong(PyLong_AsLong(a) + 2)|]
4

Quoted expressions are built on compound statements, a gnu extension to c. These
look like:

int a = ({
 int b = 1; /* This is a new block, new declarations are allowed
 int c = 2;
 b + c; /* The final expression is the result of the block.
});

We need this because most quoted expressions that will return to python need to
remember to incref the return. For example:

>>> [$c|Py_INCREF(Py_None); Py_None|] is None
True

We need to remember to call Py_INCREF or we will get a segfault somewhere in
the garbage collector at interpreter shutdown.

Note

The last semicolon is optional in c quoted expression.

Type Conversion

Because one intended use case of the c quasiquoter is optimization, there is no
implicit object conversion. All names passed from the outside scope will have
type PyObject*. This matches the normal CPython API conventions. There are
many type specific conversion functions, for example: PyLong_AsLong or
PyUnicode_AsUTF8.

This is also true for the quoted expression return value. a
quasiquotes.c.CompilationError will be raised if the final expression
does not have type PyObject*.

Reference Counting

CPython uses a reference counting garbage collection strategy. This means that
every PyObject has an ob_refcnt field (of type Py_ssize_t. This
measures the number of objects that can refer to this object. Whenever an object
is added to some container, the container will Py_INCREF the object,
increasing the reference count by 1. When the object is removed from the
container the container will Py_DECREF the object, reducing the reference
count by 1. When an object with exactly 1 reference is Py_DECREFed it will
be destroyed immediatly by calling
((PyTypeObject*) Py_TYPE(ob))->tp_dealloc(ob). This will deallocate the
object.

CPython documentation will also refer to the concept of borrowed references. A
borrowed reference is a reference to an object that the current scope does not
own. This means that the current scope is not responsible for calling
Py_DECREF on this object. For example, when arguments are passed to a
function, they are passed as a borrowed reference, if one wishes to hold onto
the object, they must Py_INCREF it to take ownership. Some CPython API
functions will return borrowed references.

Similar to the idea of borrowed reference is the idea of stealing
references. This means that a function will not Py_INCREF the object but it
will Py_DECREF it when it releases ownership. It is the job of the caller to
ensure that they want to release ownership to the function.

quasiquotes does not help the programmer with reference counting. It is still
the user’s responsibility to manage the lifetimes on their objects.

Exceptions

When a function or quoted block raises an exception, the user should call
PyErr_SetString, PyErr_Format, or one of the other functions used for
setting the exception state. These will mark that a failure has occurred so that
the interpreter knows which type of failure happened. This is very similar to
the raise keyword in python.

When an exception has been set, the function should return NULL to show that
an exception as occured. After calling most CPython API functions, the user
should verify that the return is not NULL. Often the user should bubble the
return of NULL up, making sure to Py_DECREF all of the values they had
temporary ownership of.

Compilation Caching

Whenever a quoted statement or expression is compiled, it will create a shared
object next to the python source of the file. The name of the shared object will
start with _qq_<kind> where kind can be either stmt or expr. This
marks the type of quasiquote that was used. Then it will have the name of the
module it is in. After that is an md5 hash of the body of the quoted
section. Finally, there is the ABI compat string, like cpython-34m that says
that this was CPython major version 3 minor version 4 compiled with PyMalloc
enabled.

The quasiquoter can also be configured to cache the generated c source code or
to not cache the shared objects with the keep_c and keep_so keyword
arguments to the c quasiquoter.

Every compiled chunk will be cached in memory after the quasiquote has been
executed once.

Every so often you will want to cleanup stale compiled shared objects. This can
be done with the quasiquotes.c.c.cleanup() method, or by executing:
python -m quasiquotes.c Both of these accept two arguments: path and
recurse defaulting to . and True respectivly. This marks where the
search for cached c and shared objects should begin and if the search should
recurse through subdirectories.

Compilation Options

The c quasiquoter accepts a keyword argument: extra_compile_args which
should be a sequence of string to pass to gcc. This can be used to add
include directories or link against other libraries.

 Copyright 2015, Joe Jevnik.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Quasiquotes 0.2.1 documentation

fromfile

quasiquotes.fromfile is designed to take an existing quasiquoter and
return a new quasiquoter that reads its input from a file. For example, let’s
write an “identity” quasiquoter that executes the body as python code.

from textwrap import dedent

from quasiquotes import QuasiQuoter
from quasiquotes.utils.instance import instance

@instance
class py(QuasiQuoter):
 def quote_stmt(self, code, frame, col_offset):
 exec(dedent(code), frame.f_globals, frame.f_locals)
 self.locals_to_fast(frame)

 def quote_expr(self, code, frame, col_offset):
 return eval(code, frame.f_globals, frame.f_locals)

We can use this silly quasiquoter as expected:

>>> a = 2
>>> with $py:
... print(a + 2)
4
>>> print([$py|a + 2|])
4

We can now use this to inline python from another file in our function. For
example, let’s imagine that other_file.py looks like:

print(a + 2)

We can then use this in our files like:

>>> inlinepy = fromfile(py) # remember, we need to bind this before use.
>>> a = 2
>>> with $inlinepy:
... other_file.py
4
>>> [$inlinepy|other_file.py|] is None
4
True

 Copyright 2015, Joe Jevnik.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Quasiquotes 0.2.1 documentation

Implementation

Tokens

quasiquotes works by hooking into the file encoding logic. Every file is marked
with an encoding type, defaulting to utf-8. This is shown with the # coding:
<encoding> coments at the top of some files. This encoding defines the
functions needed to convert the raw bytes that come in from the filesystem into
python str objects. Users are also able to register their own encoding types
by providing their own conversion functions. quasiquotes sits on top of the
utf-8 encoding functions; however, it tokenizes the files coming in so that it
can rewrite certian patterns.

Let’s look at some source code and the tokens that come out of it:

with $qq:
 this should not parse
 but it will

NAME('with')
ERROR(' ')
ERROR('$')
NAME('qq')
OP(':')
NEWLINE('\n')
<body>
DEDENT

This says we have the string ‘with’ followed by 2 errors. These tokens appear as
ERROR because this would normally be an invalid token in python. The next
part is the actual name of the quasiquoter you would want to use. Finally we
have the colon and newline. The body is whatever sequence of tokens make up the
indented region in the quasiquoter, and then we have the DEDENT token
marking the end of the body.

By manipulating the tokens, we can change this into something that looks like:

cc._quote_stmt(0,' this should not parse\n but it will')

Here the 0 is the column offset of this quoted expression, and the string is
the body of the context manager. The lack of space after the comma accuratly
reflects the column offsets of the tokens that the quasiquotes tokenizer emits.

Note

The original indentation is preserved.

We can do this because we still have access to the raw text that makes up each
line between the NEWLINE and the DEDENT.

Let’s also look at the quoted expressions:

[$qq|this is also invalid|]

 OP('[']
 ERROR('$')
 NAME('qq')
 OP('|')
 <body>
 OP('|')
 OP(']')

Just like with quoted statements, we can rewrite this to look more like:

.. code-block:: python

 qq._quote_expr(0,' this is also invalid')

Note

Indentation is also preserved in a quoted expression.

Runtime Lookups

An important thing to notice about the implementation is that it builds source
that has method calls of a dynamic object. While we are doing static work to
make the parser see the quoted block as valid python, we do not load the
quasiquoter until the function is being executed and we have a running
frame. This means that the current value for the name of the quasiquoter will be
used.

Expressions as QuasiQuoters

QuasiQuoters are instances, so one might think that they should be able to
do:

with $MyQQ(some_arg=some_value):
 ...

Unfortunately, this changes the token stream. We no longer have an OP(':'),
NEWLINE('\n') following the name of the quoter. Currently, we do not detect
this case and the normal python syntax error will be thrown. This is also true
for quoted expressions.

 Copyright 2015, Joe Jevnik.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Quasiquotes 0.2.1 documentation

Appendix

c

	
quasiquotes.c.c = <quasiquotes.c.c object>

	quasiquoter for inlining c.

	Parameters:	keep_c : bool, optional

Keep the generated .c files. Defaults to False.

keep_so : bool, optional

Keep the compiled .so files. Defaults to True.

extra_compile_args : iterable[str or Flag]

Extra command line arguments to pass to gcc.

Notes

You cannot pass arguments in the quasiquote syntax. You must construct
a new instance of c and then use that as the quasiquoter. For example:

with $c(keep_so=False):
 Py_None;

is a syntax error. Instead, you must do:

c_no_keep_so = c(keep_so=False)
with $c_no_keep_so:
 Py_None;

This is because of the way the quasiquotes lexer identifies quasiquote
sections.

Methods

	quote_stmt
	

	quote_expr
	

	
c.cleanup(path='.', recurse=True)

	Remove cached shared objects and c code generated by the
c quasiquoter.

	Parameters:	path : str, optional

The path to the directory that will be searched.

recurse : bool, optional

Should the search recurse through subdirectories of path.

	Returns:	removed : list[str]

The paths to the files that were removed.

	
exception quasiquotes.c.CompilationError

	An exception that indicates that gcc failed to compile the given C code.

	
exception quasiquotes.c.CompilationWarning

	A warningthat indicates that gcc warned when compiling the given C code.

fromfile

	
class quasiquotes.quasiquoter.fromfile(qq)

	Create a QuasiQuoter from an existing one that reads the body
from a filename.

	Parameters:	qq : QuasiQuoter

The QuasiQuoter to wrap.

Examples

>>> from quasiquotes.quasiquoter import fromfile
>>> from quasiquotes.c import c
>>> include_c = fromfile(c)
>>> # quote_expr on the contents of the file
>>> [$include_c|mycode.c|]
>>> # quote_stmt on the contents of the file
>>> with $include_c:
... mycode.c

Codec

	
class quasiquotes.codec.tokenizer.FuzzyTokenInfo

	A token info object that check equality only on type and string.

	Parameters:	type : int

The enum for the token type.

string : str

The string represnting the token.

start, end, line : any, optional

Ignored.

	
class quasiquotes.codec.tokenizer.PeekableIterator(stream)

	An iterator that can peek at the next n elements without
consuming them.

	Parameters:	stream : iterator

The underlying iterator to pull from.

Notes

Peeking at n items will pull that many values into memory until
they have been consumed with next.

The underlying iterator should not be consumed while the
PeekableIterator is in use.

	
lookahead_iter()

	Return an iterator that yields the next element and then consumes
it.

This is particularly useful for takewhile style functions where
you want to break when some predicate is matched but not consume the
element that failed the predicate.

Examples

>>> it = PeekableIterator(iter((1, 2, 3)))
>>> for n in it.lookahead_iter():
... if n == 2:
... break
>>> next(it)
2

	
peek(n=1)

	Return the next n elements of the iterator without consuming
them.

	Parameters:	n : int

	Returns:	peeked : tuple

The next elements

Examples

>>> it = PeekableIterator(iter((1, 2, 3, 4)))
>>> it.peek(2)
(1, 2)
>>> next(it)
1
>>> it.peek(1)
(2,)
>>> next(it)
2
>>> next(it)
3

	
quasiquotes.codec.tokenizer.quote_expr_tokenizer(name, start, tok_stream)

	Tokenizer for quote_expr.

	Parameters:	name : str

The name of the quasiquoter.

start : TokenInfo

The starting token.

tok_stream : iterator of TokenInfo

The token stream to pull from.

	
quasiquotes.codec.tokenizer.quote_stmt_tokenizer(name, start, tok_stream)

	Tokenizer for quote_stmt.

	Parameters:	name : str

The name of the quasiquoter.

start : TokenInfo

The starting token.

tok_stream : iterator of TokenInfo

The token stream to pull from.

	
quasiquotes.codec.tokenizer.tokenize(readline)

	Tokenizer for the quasiquotes language extension.

	Parameters:	readline : callable

A callable that returns the next line to tokenize.

	
quasiquotes.codec.tokenizer.tokenize_bytes(bs)

	Tokenize a bytes object.

	Parameters:	bs : bytes

The bytes to tokenize.

	
quasiquotes.codec.tokenizer.tokenize_string(cs)

	Tokenize a str object.

	Parameters:	cs : str

The string to tokenize.

	
quasiquotes.codec.tokenizer.transform_bytes(bs)

	Run bytes through the tokenizer and emit the pure python representation.

	Parameters:	bs : bytes

The bytes to transform.

	Returns:	transformed : bytes

The pure python representation of bs.

	
quasiquotes.codec.tokenizer.transform_string(cs)

	Run a str through the tokenizer and emit the pure python representation.

	Parameters:	cs : str

The string to transform.

	Returns:	transformed : bytes

The pure python representation of cs.

Utilities

	
class quasiquotes.utils.shell.Executable(name)

	An executable from the shell.

	
quasiquotes.utils._traceback.new_tb(frame)

	Create a traceback object starting at the given stackframe.

	Parameters:	frame : frame

The frame to start the traceback from.

	Returns:	tb : traceback

The new traceback object.

Notes

This function creates a new traceback object through the C-API. Use at your
own risk.

 Copyright 2015, Joe Jevnik.

 Navigation

 	
 index

 	
 modules |

 	Quasiquotes 0.2.1 documentation

 Python Module Index

 q

 			

 		
 q	

 	[image: -]
 	
 quasiquotes	

 	
 	
 quasiquotes.c	

 	
 	
 quasiquotes.codec.search	

 	
 	
 quasiquotes.codec.tokenizer	

 	
 	
 quasiquotes.quasiquoter	

 	
 	
 quasiquotes.utils._traceback	

 	
 	
 quasiquotes.utils.instance	

 	
 	
 quasiquotes.utils.shell	

 Copyright 2015, Joe Jevnik.

 Navigation

 	
 index

 	
 modules |

 	Quasiquotes 0.2.1 documentation

Index

 C
 | E
 | F
 | L
 | N
 | P
 | Q
 | T

C

 	

 	c (in module quasiquotes.c)

 	cleanup() (quasiquotes.c.c method)

 	

 	CompilationError

 	CompilationWarning

E

 	

 	Executable (class in quasiquotes.utils.shell)

F

 	

 	fromfile (class in quasiquotes.quasiquoter)

 	

 	FuzzyTokenInfo (class in quasiquotes.codec.tokenizer)

L

 	

 	locals_to_fast() (quasiquotes.quasiquoter.QuasiQuoter static method)

 	

 	lookahead_iter() (quasiquotes.codec.tokenizer.PeekableIterator method)

N

 	

 	new_tb() (in module quasiquotes.utils._traceback)

P

 	

 	peek() (quasiquotes.codec.tokenizer.PeekableIterator method)

 	

 	PeekableIterator (class in quasiquotes.codec.tokenizer)

Q

 	

 	QuasiQuoter (class in quasiquotes.quasiquoter)

 	quasiquotes.c (module)

 	quasiquotes.codec.search (module)

 	quasiquotes.codec.tokenizer (module)

 	quasiquotes.quasiquoter (module)

 	quasiquotes.utils._traceback (module)

 	

 	quasiquotes.utils.instance (module)

 	quasiquotes.utils.shell (module)

 	quote_expr() (quasiquotes.quasiquoter.QuasiQuoter method)

 	quote_expr_tokenizer() (in module quasiquotes.codec.tokenizer)

 	quote_stmt() (quasiquotes.quasiquoter.QuasiQuoter method)

 	quote_stmt_tokenizer() (in module quasiquotes.codec.tokenizer)

T

 	

 	tokenize() (in module quasiquotes.codec.tokenizer)

 	tokenize_bytes() (in module quasiquotes.codec.tokenizer)

 	tokenize_string() (in module quasiquotes.codec.tokenizer)

 	

 	transform_bytes() (in module quasiquotes.codec.tokenizer)

 	transform_string() (in module quasiquotes.codec.tokenizer)

 Copyright 2015, Joe Jevnik.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Quasiquotes 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Joe Jevnik.

_static/minus.png

_static/comment-close.png

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

